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The Mori-Nagata Theorem
We now turn our attention to the Mori-Nagata Theorem. The proof is based
upon ideas of Nagata, Rees, Querre, and McAdam. The original proof due to
Nagata used the Cohen structure theorem and properties of completions; in
particular, it used the fact that a complete local domain is finite over a
complete regular local ring. More modern treatments, like the one below, avoid
the use of completions.

The following is our first lemma. A crucial point in Nagata’s proof of the
Mori-Nagata theorem was that height one primes in the integral closure of a
Noetherian domain R contract to grade one primes in R .

The proof required passage to the completion. We extend McAdam’s
elementary proof of this fact, so that it applies to primes in the integral closure
minimal over colon ideals.

Lemma K2. Let R be a Noetherian domain with integral closure S. Take
a ∈ R , assume that Q ⊆ S is minimal prime over (aS :S b) and set
P := Q ∩ R . Then P is an associated prime of R/aR .
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The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P .

Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module, including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R . Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c , so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR . Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module, including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R . Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c , so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR . Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P ,

it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module, including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R . Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c , so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR . Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module,

including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R . Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c , so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR . Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module, including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R . Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c , so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR . Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module, including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R . Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c , so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR . Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module, including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R .

Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c , so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR . Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module, including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R . Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c , so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR . Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module, including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R . Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c ,

so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR . Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module, including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R . Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c , so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR . Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module, including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R . Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c , so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR .

Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module, including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R . Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c , so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR . Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for
all q ∈ Q, there exists s ∈ S\Q such that s · qhb ∈ aS, for some h.

If we do this for the finitely many generators of P , it follows that there exists
s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR0 and R0 is a
finite R-module, including, s, b ∈ R0.

Thus, for all n ≥ 1, Pnt · snbn ⊆ anR0.

Let 0 6= c ∈ R satisfy c · R0 ⊆ R . Then, Pnt · (csnbn) ⊆ anR , for all n.

If csnbn ∈ anR , for all n, then R [ sb
a ] ⊆ R · 1

c , so sb
a ∈ S, which implies

s ∈ (aS :S b) ⊆ Q, a contradiction.

Thus, for some n, csnbn 6∈ anR . Therefore, Pnt consists of zero divisors
modulo anR .

Since P is maximal, it follows that P ∈ Ass(R/anR), and hence
P ∈ Ass(R/aR), which gives what we want.

April 3: Krull Domains and the Mori-Nagata Theorem, part 3



The Mori-Nagata Theorem, continued

Lemma L2. Let R be a Noetherian domain and set A := S ∩ T , where T is the
global transform of R and S is the integral closure of R . If P ⊆ A is a maximal
ideal and P is an associated prime of a principal ideal, then AP is a DVR.

Proof. Suppose P = (aA : b) is maximal. If m := R ∩ P , then m is maximal
(since A is integral over R) and m(b/a) is contained in A ⊆ T , so
Jm(b/a) ⊆ R , for J a product of maximal ideals. Thus, b/a ∈ T .

Now, either P · P−1 = P or P · P−1 = A.

In the first case, we get P · b/a ⊆ P , which would implies b/a is integral over
R and thus b/a ∈ S.

But then b/a ∈ A, contradiction.

Thus, P is invertible, so PP is principal. i.e., AP is a DVR.
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The Mori-Nagata Theorem, continued

Corollary M2. Let R be a Noetherian domain with integral closure S. Let
a ∈ R and suppose that Q ⊆ S is a prime ideal minimal over (aS :S b).

Set
P := Q ∩ R .

Then Q has height one and there are only finitely many height one prime ideals
Q := Q1, . . . ,Qh in S lying over P . Morover, for any 1 ≤ i ≤ h, SQi is a DVR.

Proof. We may assume that R is local at P . Let A be as in the Lemma L2.
Lemma K2 applied to the ring A, shows Q ∩A is associated to a principal ideal.

Thus, by Lemma L2, AQ∩A is a DVR. It follows that AQ∩A = SQ .

In particular, Q has height one.

The same argument applies to any height one prime in S lying over P . Thus,
these all contract to distinct primes in A containing PA.

Moreover, since each contraction to A is minimal over PA (by lying over),
these contractions are finite in number since A is Noetherian.

Thus, only finitely many height one primes in S contract to P .
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The Mori-Nagata Theorem, continued
We now state and prove the Mori-Nagata theorem :

Theorem N2. Let R be a Noetherian integral domain with quotient field K and
let L be a finite algebraic extension of K . Write S for the integral closure of R
in L. Then :
(i) S is a Krull domain.
(ii) For every prime ideal P ⊆ R , there are only finitely many primes Q ⊆ S

lying over P . Moreover, for any such Q, [k(Q) : k(P)] < ∞.

Proof. For (i), we first reduce to the case that K = L. Since L is finite over K ,
we may find a subring R0 of S with the following properties : R0 is finite over R
and R0 has quotient field L.

Thus, S is the integral closure of R0. Changing notation, we may start again,
assuming simply that S is the integral closure of R .
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The Mori-Nagata Theorem, continued

We now check off the properties required in verifying that S is a Krull domain.

First, let Q ⊆ S be a height one prime ideal. Take 0 6= a ∈ Q ∩ R . Then Q is
minimal over (a :S 1), so by Corollary M2, SQ is a DVR.

Second, let 0 6= s ∈ S. If we show that some multiple of s is contained in only
finitely many height one primes in S, then the same holds for s. Thus, we take
a ∈ R , any non-zero multiple of s in R .

If Q is a height one prime containing a, then by Lemma K2, P := Q ∩ R is an
associated prime of R/aR .

By Corollary M2 only finitely many height one primes in S lie over P .

Since R/aR has only finitely many associated primes, there can only be finitely
many height one primes containing aS.
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Finally, suppose that x ∈
⋂

SQ , where the intersection ranges over the height
one primes of S.

We can write x := b/a, for b, a ∈ R . If x is not in S, then (aS :S b) is a proper
ideal. Let Q be a minimal prime over (aS :S b).

By Corollary M2, Q has height one. But x ∈ SQ , contradiction.

Thus, S is the intersection of its localizations at height one primes.

Therefore, S is a Krull domain.
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The Mori-Nagata Theorem, continued

For statement (ii), let P ⊆ R be a prime ideal.

We may assume R is local at
P . Let Q ⊆ S lie over P . We first show by induction on the height of P that
[k(Q) : k(P)] < ∞.

When P has height one, R has dimension one, so we can apply Krull-Akizuki.

Suppose the height of P is greater than one. If Q has height one, we let A be
as before. As in Corollary M2, AQ∩A = SQ , so k(Q) = k(Q ∩ A).

But now, if a is any non-zero element in P , A/aA is finite over R (by
Matijevic’s theorem), so A/Q ∩ A is finite over R/P , which then gives
[k(Q ∩ A) : k(P)] < ∞.

Suppose Q has height greater than one. Then we take Q ′ properly contained
in Q and P ′ := Q ′ ∩ R . By induction applied to P ′, the quotient field of S/Q ′

is finite over the quotient field of R/P ′.

We have R/P ′ ⊆ S/Q ′ ⊆ (S/Q ′)′.

Thus, induction applied to P/P ′ shows that [k(Q/Q ′) : k(P/P ′)] < ∞.

But, k(Q/Q ′) = k(Q) and k(P/P ′) = k(P), so, [k(Q) : k(P)] < ∞.
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The Mori-Nagata Theorem, continued

Finally, for P ⊆ R , we show that there are only finitely many primes Q ⊆ S
lying over P .

First note that by Corollary M2, there are only finitely many
height one primes in S lying over P . Note that this finishes the proof if P has
height one.

Now, let 0 6= a belong to P . On the one hand, since S is a Krull domain, there
are only finitely many primes in S, all of height one, minimal over aS.

On the other hand, any prime Q of height greater than one which contracts to
P must contain one of these minimal primes. Let Q ′ be a height one prime
containing aS and set P ′ := Q ′ ∩ R . k(Q ′) is finite over the quotient field of
k(P ′).

Thus, by induction on the height of P , in the integral closure of R/P ′ in
k(Q ′), there are only finitely many primes lying over P/P ′. Therefore, S/Q ′

contains only finitely many primes lying over P/P ′.

Thus, there are only finitely many primes in S containing Q ′ lying over P .
Since this holds for each of the finitely many minimal primes of aS, we
conclude that there are also only finitely many primes of height greater than
one in S lying over P .

This completes the proof of the Mori-Nagata theorem.
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Two applications of the Mori-Nagata Theorem
As applications of the Mori-Nagata theorem, we will prove that the integral
closure of a two-dimensional Noetherian domain is Noetherian and that a
complete local domain is satisfies N2.

Theorem O2. Let R be a two-dimensonal Noetherian domain with quotient
field K . Let S be the integral closure of R in a finite extension of its quotient
field. Then S is Noetherian.

Proof. By the Mori-Nagata theorem, S is a Krull domain, so by Nishimura’s
theorem (Theorem 2C), it suffices to prove that S/Q is Noetherian for all
height one primes Q ⊆ S.

Take such a prime and set P = Q ∩ R . Note that R/P is a one-dimensional
Noetherian domain with quotient field k(P).

By the second part of the Mori-Nagata theorem, [k(Q) : k(P)] is finite.

Since R/P ⊆ S/Q ⊆ k(Q), S/Q is Noetherian, by the Krull-Akizuki theorem,

and the proof is complete.
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Two applications of the Mori-Nagata Theorem
The standard proof the next theorem appeals to the Cohen Structure Theorem.
The proof below avoids the use of Cohen’s Structure Theorem, and is modeled
on the proof of Nishimura’s Theorem C2.

Theorem M2. Let (R ,m) be a complete local domain with quotient field K .
Let L be a finite extension of K and S be the integral closure of R in L. Then
S is a finitely generated R-module. In other words, R satisfies the Nagata
condition N2.

Proof. We will use the fact that if M is an R module and M satisfies the two
conditions: (i) M/mM is finite over R and (ii)

⋂
n≥1 m

nM = 0, then M is finite
over R .

We induct on the dimension of R . Suppose R has dimension one and let a be
any non-zero element in m. Then by the Krull-Akizuki theorem (or Matijevic’s
theorem), S/aS is finite over R .

Thus, S/mS is finite over R .

On the other hand, S is a Noetherian domain (by Krull-Akizuki), so⋂
n≥1 m

nS = 0. Thus, S is a finite R-module.
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Two applications of the Mori-Nagata Theorem

Suppose that R has dimension greater than one.

Let Q ⊆ S be a height one
prime. Then [k(Q) : k(Q ∩ R)] is finite, so by induction applied to the
complete local domain R/Q ∩ R , S/Q is a finite R/Q ∩ R-module, and thus is
finite over R .

By Proposition B2, Q(n)/Q(n+1) embeds into S/Q for all n, so these modules
are finite over R . Thus, induction applied to the exact sequences

0 → Q(n)/Q(n+1) → S/Q(n+1) → S/Q(n) → 0

shows that S/Q(n) is finite over R , for all n ≥ 1.

Now, let a be any non-zero element of m. Since S is a Krull domain, aS has a
primary decomposition aS = Q(n1)

1 ∩ · · · ∩ Q(nh)
h , where the Qi are height one

primes in S and each n1 ≥ 1.

Since S/aS embeds into S/Q(n1)
1 ⊕ · · · ⊕ S/Q(nh)

h , it follows that S/aS is finite
over R .

Thus, S/mS is finite over R .
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Two applications of the Mori-Nagata Theorem

To see that
⋂

n≥1 m
nS = 0, take R0 ⊆ S finite over R and birational to S

and
take P ⊆ R0 a prime (in fact, its the only one) lying over m.

By Corollary G2, there exists a DVR (V ,mV ) in L with R0 ⊆ V and
mV ∩ R0 = P .

Thus, mV ∩ R = m.

Since V is integrally closed, S ⊆ V .

Therefore, mnS ⊆ mn
V , for all n.

Since
⋂

n≥1 m
n
V = 0, follows at once that

⋂
n≥1 m

nS = 0, which is what we
want.

Therefore, S is finite over R .
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